Transversal Intersection Curves of Two Surfaces in Minkowski 3-Space
نویسندگان
چکیده
منابع مشابه
Biharmonic Curves in Minkowski 3-space
We give a differential geometric interpretation for the classification of biharmonic curves in semi-Euclidean 3-space due to Chen and Ishikawa (1991).
متن کاملRuled W - Surfaces in Minkowski 3 - Space
In this paper, we study a spacelike (timelike) ruled W-surface in Minkowski 3-space which satisfies nontrivial relation between elements of the set {K, KII , H, HII}, where (K,H) and (KII , HII) are the Gaussian and mean curvatures of the first and second fundamental forms, respectively. Finally, some examples are constructed and plotted.
متن کاملhyperruled surfaces in minkowski 4-space
in this paper, the time-like hyperruled surfaces in the minkowski 4-space and their algebraicinvariants are worked. also some characteristic results are found about these algebraic invariants.
متن کاملCaustics of de Sitter spacelike curves in Minkowski 3-space
In this paper, we consider evolutes of spacelike curves in de Sitter 2-space. Applying the theory of singularity theory, we find that these evolutes can be seen as one dimensional caustics which are locally diffeomorphic to lines or ordinary cusps. We establish the relationships between singularities of caustics and geometric invariants of curves under the action of the Lorentz group. c ©2016 A...
متن کاملOn Razzaboni Transformation of Surfaces in Minkowski 3-Space
In this paper, we investigate the surfaces generated by binormal motion of Bertrand curves, which is called Razzaboni surface, in Minkowski 3-space. We discussed the geometric properties of these surfaces in M according to the character of Bertrand geodesics. Then, we define the Razzaboni transformation for a given Razzaboni surface. In other words, we prove that there exists a dual of Razzabon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Selecciones Matemáticas
سال: 2018
ISSN: 2411-1783
DOI: 10.17268/sel.mat.2018.02.02